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A correlation technique is developed to characterize the distribution of fractal structures. This
method generalizes the concept of lacunarity to a scaling function and is naturally suited to distinguish
between fractal structures with similar fractal dimensions for already small systems. We therefore pro-
pose it as a convenient tool to quantify the vaguely defined concept of morphology. Our lacunarity func-
tion is sensitive to logarithmic periodicities and we conjecture that its asymptotic behavior yields infor-
mation on corrections to scaling in simpler measurements. The formalism we use can be generalized to

analyze multifractal structures.

PACS number(s): 64.60.Ak, 61.90.+d

I. INTRODUCTION

Fractal structures appear in an extremely large range
of phenomena, touching upon almost every imaginable
field of science. These structures were identified by Man-
delbrot [1] to exhibit the key property of self-similarity,
namely, under scale transformations »-—r'=Rr the
structure can be mapped back onto (a subset of) itself. In
doing so the “measure” (e.g., the number of points that
constitute the structure) must also be rescaled by a factor
of RP to match, and the index D is termed the fractal di-
mension. Such structures play a significant role in phys-
ics in modeling many disordered systems and in studying
phase transitions and critical phenomena. The fractal di-
mension is a crucial characteristic of the structure and
without it one cannot make rational comparisons be-
tween measurements made on different scales. Self-
similarity of the underlying structure leads naturally to
the expectation that various properties of the structure
will also be governed by power laws. This has been real-
ized for various connective properties (as, for example, in
the percolation problem), and in particular for the spec-
trum of internal excitations. The corresponding lists of
exponents have been taken as one way to characterize the
structures more completely. This abundance of parame-
ters clearly calls for some organizing principles to exactly
characterize the structure of fractals. Also, in dynami-
cally evolving self-similar patterns it is not uncommon to
find that structures change dramatically with, or without,
the change of some parameter. The identification of such
morphological transitions involves usually occular obser-
vation, which at best can only be qualitative. Therefore a
more quantitative definition of morphology is much in
need. Formulations that concentrated on specifying the
variance of the spatial distribution of voids in the struc-
ture have been attempted [1,2], as well as focusing direct-
ly on the spatial distribution of the fractal structure [3].

In this paper we develop and apply a direct method to
organize and characterize fractal structures and different
morphologies in terms of the correlations between subsets
of the structure at different scales, ultimately related to
the three-point correlation function (TPCF) of the sys-
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tem. The results reported here show that this method is
useful as follows: (i) It enables one to distinguish between
structures with similar fractal dimension; (ii) It supplies
a criterion to quantify the concept of morphology; (iii) It
may be able to identify corrections to scaling from the
large-scale regime, as we demonstrate for the exactly solv-
able case of random walks; and (iv) It is sensitive to loga-
rithmic periodicities.

Consider the implications of various continuous sym-
metries on the measurement of one-, two-, and three-
point normalized correlation functions. The one-point
function is just the density ¢,(r), reduced (on average
over the volume of the system) to a constant ¢, if the sys-
tem has, on average, symmetry under translations. The
two-point correlation function is derived from the pair
density, ¢,(r,r')=¢,C,(r—1')=¢,C,(|r—1'|) by transla-
tional invariance and rotational symmetry successively.
For a statistical fractal, invariance under dilations gives
C,(r)= Ar? 9 where only two constants can be deter-
mined. For the three-point function translational and ro-
tational invariance lead to

¢s(r, ', 1" )=¢,C3(r—r',r—1"")

=¢,Cs(lr—r'|,[r—r'],6) , (1.1)
where 0 is the angle between the first two vectorial argu-

ments. Applying dilational invariance then gives

ba(r, 0, 0"V =,C, (It —1r'NC,([r—1" )L #—Er‘—,,'r,e

In

(1.2)

Thus for a fractal which is statistically isotropic and has
a continuous dilational symmetry, the three-point corre-
lations reduce to a nontrivial scaling function £ of just
two variables.

The construction of this communication is as follows.
In Sec. II we reformulate the reduced TPCF in simply
measurable terms. Section III shows how two different
analyses of the same information are related by a simple
differential equation, where the fractal dimension enters
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with the role of screening rate in logarithmic scale. In
Sec. IV we analyze the angular averaged function for
selected structures, demonstrating in one example that it
shows features related to the way the structure was con-
structed, and in another that it can distinguish structures
of similar fractal dimension. Finally we discuss the re-
sults and suggest a way to extend the method to handle
multifractal structures.

II. THE LACUANARITY FUNCTION

Given a set of points in d dimensions, equally weighted
for simplicity, we choose a point, which we index i, and
we construct concentric shells around the coordinates of
this point. The shells are chosen to have a uniform width
in logarithm of the distance r = |r| from i. For each i, we
measure the “mass” 8S;(r), which is the number of other
points in a spherical shell at radius » from it. The aver-
age of this measurement over all choices of i, normalized
by the volume of the shell, is the usual pair-correlation
function C,, which gives the mean mass in shell,

C,(r)={8S,(r)) /8V(r) @.1)

(in the following averages over i are denoted simply by
{ )). We can now define the relative fluctuations in the
mass distribution about site i in terms of the relative shell
masses,
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80 ,(r)=85,(r)/{85(r)) . (2.2)

For a fractal our expectation would be that o ;(r) has
fluctuations of order unity which are correlated over mul-
tiplicative ranges of radius, and hence over a simple
range in p=Inr. We define a correlation matrix,

M(p,p')=(80;(r)do;(r')) , (2.3)

and anticipated that M should be overall scale invariant,
M(p,p')=L(p—p'). Thus defined .L represents an aver-
age of the autocorrelation function of the relative shell
masses, and we propose to call it a (radial) lacunarity
function (LF) because it contains an earlier definition of
lacunarity, M (p,p) [2]. Figure 1 shows a contour plot of
the correlation matrix M for several two-dimensional sys-
tems: A 4000-monomer-long self-avoiding walk (SAW),
and 4096-particle cluster-cluster aggregate (CCA) and a
sample of 10* particles chosen randomly from a 10°
particle diffusion-limited aggregate (DLA). Apart from
end effects at the largest and smallest separations, con-
tours that are roughly parallel to the diagonal support
the idea that the correlations are indeed functions only of
the relative logarithmic separation |p—p’|. The corre-
sponding LF’s are shown in Fig. 2 and show nontrivial
structure. In all three cases .L starts from a value appre-
ciably larger than one at the origin and saturates to unity
for ]p—-p’| > A, where A, is some finite number. This

p=in{r)/In2

FIG. 1. A contour of the
correlation matrix M (p,p’) for

pA=In{r)/In2
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three different fractal structures:
(a) A 4000-monomer-long SAW,
(b) a 4096-particle CCA, and (c)
a sample of 10* particles chosen
randomly from a 10°-particle
DLA.

p=In(r)/In2



p—p"=[Inr=Inr']/In2

FIG. 2. The lacunarity function .L for (%) SAW, (+) CCA,
(0) DLA and the approximant function [Eq. (2.8)] with
D =1.33(X)and D =1.71(A).

means that when r’'/r >exp(A,) the subsets of the struc-
ture are uncorrelated.

One of the main motivations of Mandelbrot [4] and
Gefen et al. [2] in formulating the concept of lacunarity
was to distinguish between different fractal patterns that
have the same fractal dimension. Such a discrimination,
although easily achieved by the human eye and brain [5],
proved very difficult to get by any simple analytic tool.
Our LF succeeds in distinguishing between the CCA and
SAW whose fractal dimensions are very similar (1.42 and
1.34 in 2D, respectively). Note that we achieve this
discrimination already for very moderate sizes of 4000
particles. Namely, the CCA and SAW curves display
different structures, indicating different patterns. To dis-
tinguish between the structures by measuring the fractal
dimensions accurately enough would require systems
larger by an order of magnitude. The advantage of our
LF is evidenced by the fact that the fractal dimensions we
measure for our systems are still indistinguishable at this
scale (CCA: 1.45+0.15 and SAW: 1.340.2).

Our LF can be readily generalized to take account of
direction as well as radius by correlating the masses
8S;(r) at fixed vector separation rather than just fixed ra-
dius. We then divide each of the above shells around the
ith particle into equiangular sections and measure the
mass ds; within such a region at a vector separation r,

80 (r)=38s;(r)/(8s(r)) .

Extending the definition of M in expression (2.3) we then
form the correlation operator (which has now 2D in-
dices),

M(r,r')=(80,;(r)80,(r')) .
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This form is equivalent to the TPCF of the system, given
in terms of M by

Cs(r,r")=M(r, 1" )C,(r)Cy(1") . (2.4)

In two dimensions for a (statistically) scale-invariant and
isotropic structure we anticipate that the correlation ma-
trix reduces to

M (r,r’')=L(In(#'/7),0) . (2.5)

This angularly dependent LF contains the full three-point
correlation function for a (statistically) scale-invariant
and isotropic structure. From it the simpler radial .L
function discussed previously may be recovered as its
(solid angle weighted) angular average.

Established approximations for the TPCF bear upon
the LF which encodes the latter. In particular the ap-
proximation

Cy(r,1')=1/2[C,(r)C,(r' )+ Cy(r' —)C,(r)

+C2(r_'rl)C2(r’)] 5 (26)

is exact for structures based on Markov sequence, such as
(unrestricted) infinite Brownian walks [6] and corre-
sponding linear and randomly branched -polymers, and
has been claimed to apply to galaxy correlations [7] (al-
beit with a factor of 1.3 instead of J). In terms of the full

lacunarity function this reduces to
L,(InR,0)=[1+(1+R)(1+R2—2R cosh) °"*]/2,
.7

where R =r/r'=exp(p—p’') and c=d —D is the codi-
mension of the structure. Upon angular average this gives

P#(cothA)

A _
L,(M)=1/2+cosh<*[2sinhA ] ¢/2—————
cosh Sy s (ot

, (2.8)

where A=|InR |, u=1—d /2, and v=D /2—1 [12]. This
function, for D =1.33 and 1.71, is also plotted in Fig. 2
against A, to compare with the numerical cases. They are
clearly different showing that £ is in general nontrivial
and cannot be reduced to C,(r) as for the random-walk
case.

III. SHELL CORRELATIONS
VERSUS SPHERE CORRELATIONS

An alternative way to analyze the correlations within
the structure is by considering the total mass within a
sphere of radius 7, #M(r), and correlate it with the mass
within a sphere of radius r’. This method is better
behaved statistically than correlating shells, but they are
closely related as we now demonstrate. Consider the to-
tal mass within distance r from the point i, J;(r).
Averaging over i gives the usual fractal behavior,

M(r)={(M(r))=Br?, (3.1

which relates to the two-point correlation function
Cy(r)=r'793,M(r). It is the fluctuations of JM(r)
around JU(r) which we now investigate by considering
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(M (r\Mi(r))=FUn(r' /r)MA(r)M(F') , (3.2)

where we expect #(In(r’/r')) to be a (scale-independent)
measure of the correlations. The formulation we used in
the previous section amounts to

(3,M,;(r)3,M, (")) =L(In(r' /7)), M(r)D,M(r") .

(3.3)
The function .L can now be related to # as follows:
L(In(r'/r))o,M(r)d, M(r")
=9, (M, (r\M;(r'))
=9, [H(In(r'/r))M(r)M(r')] . (3.4)

Carrying out the differentiation explicitly and identify-

ing the fractal dimension as D =rd,[InM(r)]
=r'9,[InM(r")], we find

LN)=H(L)—d;,,H(\)/D?, (3.5)
where A=In(r'/r). It is important to note that

both L and # are even functions of their argument.
Equation (3.5) and its inverse FH(N)
=(D/2)f°_°we’D|N—)‘|,C(7»’)d7»’ show that .£ is more
sensitive to some details than #. For example at small
|A| the expansion of £, yields [8] L, (A)~ A4 —BIA|? ]
corresponding to H,(A)=A +BD/(D+1)A[PT],
where A4 and B are positive constants.

IV. LOGARITHMIC PERIODICITIES
AND CORRECTIONS TO SCALING

It has been suggested that self-similar patterns formed
by processes of stochastic growth entertain periodicities
in p space that manifest through geometrically increasing
spacing between major sidebranches [9]. Examples in-
clude cracking and noise-reduced DLA. Understanding
the origins of the particular spacing patterns plays a
significant role in understanding the basic mechanisms
that select the resultant macroscopic structures. Our
function .L should detect such periodicities in logarithmic
space coordinates. If one measures .L for a given distri-
bution of data points and finds a distinct peak, one can
conclude that at the corresponding ratio of length scales
there is some repetition in the structure regardless of ab-
solute scale.

To illustrate this we have examined disordered cantor
sets. The structures are constructed by deleting at the
nth stage a third section of each line that survived the
deletion at the (n —1)th stage, but letting the location of
the deleted section fluctuate about the center. As the
fluctuations increase the resulting structures would have,
on statistical averages, no preferred absolute length scales
only relative ones. Indeed to the eye the resulting struc-
tures seem very disordered. Nevertheless, as shown in
Fig. 3, the LF can easily detect the underlying length
scale factor of the recurrence procedure, which shows up
as a periodicity in .£, damped by the disorder.

We have considered whether the results for physical
structures can be interpreted similarly. The CCA clus-
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p=p'=[Inr=Inr']/Ln2

FIG. 3. The LF of a disordered cantor set displaying the
characteristic oscillations.

ters are constructed by successive dimerization of (hither-
to unrelated) clusters of equal mass, so it is expected that
the range of correlation shown by £ should be short.
Doubling the mass of a structure with a fractal dimension
D by dimerization increases the cluster size by a factor
r'/r =21P Hence one could argue that the LF should
show some features at this scaling factor. The SAW, on
the other hand, is not expected to show any such feature.
We have plotted the function .L —1 vs p—p’ for the SAW
and CCA, on a semilog scale in Fig. 4, to compare detail
at small A. Indeed an irregularity (which we have
checked is reproducible) appears for the CCA around
A=In2/D, before and after which there is a smooth de-
cay of A. The corresponding plots for DLA and for £,
for D =1.33 and 1.17 are also shown for comparison.

However, the most distinct difference between the
CCA and the SAW structures is in the different rate of
decay to unity. Thus Fig. 4 also suggests another inter-
pretation of the data. Straight-line segments for A > 1
would indicate that a good fit would be obtained to a sum
of powers,

L=1+ Ap(r'/r)ﬁp+0((r'/r)“q), q>p>0. 4.1)
We conjecture that the power p, and other corrections,
should match ordinary corrections to scaling. This conjec-
ture is motivated by analogy with conventional relations
between correlations and response functions in thermal
and quantum physics. For random walks we have
confirmed this conjecture analytically with p =c¢ and
q =2 corresponding to corrections to scaling in C,(r)
from finite length and discrete steps, respectively. To
pursue this quantitatively by simulations requires data of
higher quality than presently available. Such an analysis
is also strongly sensitive to whether the leading constant
term (expected unity) should be adjusted to the data or
not [7]. We expect logarithmic corrections to scaling to
generate terms in this regime that decay as powers of A.
The important overall point is that the structure of the
LF in the pure scaling regime may dictate the forms of
the corrections to scaling in simpler measurements.
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FIG. 4. The function log,[.L—1] for (%) SAW, (+) CCA,
(O) DLA and the approximant function with D =1.33(X) and
D =1.71 (A). Note the deviation from smooth decay, and the
shift of the curve to the right, starting around 0.7~1/D.

V. APPLICATION TO MULTIFRACTALS
AND DISCUSSIONS

It appears that the LF can also be defined for mul-
tifractal measures, although it requires more care with
normalization. Simple box counting arguments suggest
that the correlation matrix as defined in (2.2) and (2.3)
takes the more general form [10],

M(p,pf)z(r/RO)27‘(2)*7‘(3)9[:(p_p;) ,

where r is the larger of the two radii, R, is the radius of
the sample, and 7(q) are the conventional moment scaling
exponents of the measure [11]. Thus the correlation ma-
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trix in general contains two different sorts of information:
on the diagonal M (p,p) reveals 27(2)—7(3)=2(D,—D;)
for a multifractal, but is constant for a simple fractal.
The off-diagonal behavior reveals the lacunarity through

Lip—p")/LO)=M(p,p')/M(p,p), p>p".

This result leads us to expect that the LF of multifractal
measures reflects basically the spatial distribution of the
support of the second moment of the measure. In princi-
ple, by correlating higher powers of the measure, the la-
cunarity of the support for higher moments can also be
probed.

To conclude we have proposed a method to analyze
fractal structures through the three-point correlation
function in logarithmic coordinates. We have introduced
a lacunarity function that distinguishes morphologies
with very similar fractal dimensions but different spatial
distributions, as demonstrated for the case of cluster-
cluster aggregation and self-avoiding walks. This distinc-
tion can be achieved already for small sizes, where the
usual measurements of fractal dimensions are still too
noisy for separation. The method proposed here is also
well suited to probe scale-invariant periodicities in the
pattern formed by stochastic processes, as we demon-
strated in the case of disordered Cantor sets. Finally, we
propose that it may also retrieve corrections to scaling
from the large-scale behavior. It is hoped that this tech-
nique can assist in a better understanding of growth pro-
cesses such as noise-reduced diffusion-limited aggrega-
tion, dendritic solidification, etc. Generalizations of the
formalism have been proposed for the angle-dependent
LF, and we have briefly outlined a generalization for mul-
tifractal distributions.
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